Utility Energy Forum

Wednesday, April 24, 2024 | 1:15-2:15pm Benjamin Finkelor, Executive Director

The Utility Industry is Going Through a Massive Clean **Energy Transition... a Discussion**

- What UC Davis is doing to help
- What I learned from my time at the CA Energy Commission
- Heat pumps are a microcosm for the challenge ahead

About UC Davis

- » 40,000 students
- » 10,000 faculty, staff, researchers
- > \$1 billion per year in research expenditures
- #1 in the US for campus sustainability
- » Wall Street Journal ranked 5th among public universities

Davis, Sacramento, and the Bay Area

EEI accelerates the Development and Commercialization of Sustainable Energy Technologies & Solutions and Training Future Energy Leaders

Affiliated Research Centers and Programs

California Lighting Technology Center

Center for Water-Energy Efficiency

UCDAVIS

Industrial Decarbonization Solutions Hub

UCDAVIS

Materials Decarbonization and Sustainability Program

UCDAVIS

Market Transformation Research Program

UCDAVIS

POLICY INSTITUTE FOR ENERGY, ENVIRONMENT AND THE ECONOMY

UC Davis Energy and Efficiency Institute

- » First University-based Energy Efficiency Center in the US
- » Founded upon Partnerships with CA utilities and national industry leaders

Pacific Gas and Electric Company

Broad Range of Industry Partners

www.inpipeenergy.com

ladwp.com

SEELE INTERNATIONAL www.schweitzer-associates.com www.seeleyinternational.com

siemens.com

Silicon

Valley

Power

siliconvalleypower.com

www.smud.org

https://www.northamerica-daikin. com/

https://energy-solution.com/

WESTERN STATES COUNCIL California - Arizona - Nevada - Hawaii

smart-union.org

trccompanies.com

Prestigious Board of Advisors

 Distinguished leaders in industry, government, public interest organizations, and academia » Provide valuable insight and advice on research opportunities, funding strategies, and outreach

Bipartisan Gubernatorial Support

Former Gov. Schwarzenegger Launches the "Energy Efficiency Center" (2006) Former Gov. Jerry Brown Visits the Honda Smart Home (2015)

Gov. Gavin Newsom Speaks at the UC Davis West Village ZNE Development Grand Opening (2011)

Extensive Outreach & Engagement

- > 50-60 visits and tours each year with national and international visitors
- » Weekly seminars during fall, winter, and spring quarter
- » Conferences and events (e.g., Global Energy Managers Workshop and Industrial Decarbonization Symposium)
- » Emerging Energy Professionals Program to connect students with alumni mentors as they search for internships and careers
- » Environmental Justice Leaders Program to connect university-based research programs & personnel with community expertise & knowledge

Leading Energy Graduate Group

- » Preparing next-generation leadership in government, the private sector, and academia to tackle the energy challenges of the 21st century and beyond.
- Students conduct interdisciplinary research to address pressing environmental, economic, policy, and social challenges facing California, the U.S., and the world.

Accelerate the development and commercialization of efficient heating, cooling, and energy distribution solutions.

- Develop and test new and existing **HVAC** technologies
- In-house laboratory with environmental chamber capable of re-creating 95% of California's hot/dry climates
- Green-house gas emissions from **>>** residential systems
- Performance of low global-**》** warming potential refrigerants for heat pumps
- Whole-house infiltration sealing **》**
- Indirect-evaporative cooling systems

C UCDAVIS Energy and Efficiency Institute

Improving Indoor Air Quality in California Schools

C UCDAVIS Energy and Efficiency Institute California Lighting Technology Center

Accelerate the development and commercialization of energy-efficient lighting and daylighting technologies.

Technology Center

- development, as well as protype and product testing
- Commercialize energy-efficient lighting and daylighting technologies
- patents, and license agreements

- market research, resources, lighting guides, working papers, and white papers
- Conduct technology **》** demonstrations and publishes reports on these projects
- workshops, seminars and outreach activities

Energy and Efficiency Institute

UCDAVIS Energy and Efficiency Institute VCDAVIS Center for Water-Energy Efficiency Advance water management solutions for the integrated savings

or substantial descent in the substantial in the substantial descent in the

of water and energy resources.

Center for Water-Energy Efficiency

Develop strategies, technologies, and policies that achieve mutual benefits of water, energy, carbon, and cost savings

Disseminate research results to increase public awareness, stakeholder engagement, and widespread adoption of

Water and Energy Efficiency

Smart Water and Internet of Things Data Privacy and Security

Water System Economics Water Demand Management Energy Demand Management

Industrial Decarbonization Solutions Hub

- Consortium of public and private sector partners committed to accelerating the development and commercialization of solutions that can improve the efficiency and decarbonization of industry
- Industry accounts for one-third of total US energy consumption and greenhouse gas emissions, making these decarbonization efforts critical to achieving our collective climate and economic goals
- > 2024 Symposium April 16 at UC Davis.

Materials Decarbonization and Sustainability Program

- Advances low-carbon cement and steel.
- Uses a life-cycle approach to comprehensively address sustainability and functionality.

Market Transformation Research Program

》	Support the transition to a clean energy society by providing	» Ov
	insights on the human side of technological change.	

- Market outlook research identifies barriers and opportunities for **》** clean technology by considering the economic, technical, and policy landscape, as well relevant behavioral factors that influence stakeholder adoption.
- » 35 published papers

ver 20 projects current and completed

» 3 full-time staff and 3 graduate student researchers

Recently Funded Research

- \$10M to investigate new energy-efficient technologies as part of CEC-funded State-Wide Energy Emerging Technologies Program
- \$3M to conduct field demonstrations as part of CEC-funded **>>** CalFlexHub
- » \$4M to develop solar powered exterior lighting systems in partnership with disadvantaged communities from CEC
- \$3M to investigate heavy-duty vehicle electrification for critical **>>** operations from the CEC
- \$500K from Panasonic/NEDO to advance Virtual Home Energy Management technologies
- > \$150K seed funding to investigate industrial decarbonization from DOE - LBNL
- \$300K from Toyota to investigate color and stress related to small **>>** interior environments (patent pending)

The Utility Industry is Going Through a Massive Clean **Energy Transition... a Discussion**

- What UC Davis is doing to help
- What I learned from my time at the CA Energy Commission
- Heat pumps are a microcosm for the challenge ahead

Augmented from Feb 2022 – June 2023

- > Joined Vice Chair Gunda's office as Special Advisor and Chief of Staff
- Supported him on all his lead assignments, including:
 - Reliability and Emergency Planning
 - Integrated Energy Policy Report (IEPR)
 - Equity
 - OTC Extensions (including Diablo)
 - SB100 Decarbonizing Electricity
 - Transitioning the Gas System
 - Offshore Wind Planning
 - **Oil Refinery Profit Margins**
 - Load Flexibility Goals
 - Regionalization

It's time to put climate first!

California's has a Robust Climate Policy Framework

GHG Targets & Goals

Legislation & Executive Orders: Total GHGs (AB 32/SB 32/AB 1279) or sector targets (SB 1383/SB 100), etc.

2020 California GHG Emission Contributions by Scoping Plan Sector

Scoping Plan

Actionable plan across all sectors

Action

Regulations & Incentives: Advanced Clean Cars, climate change investments, etc.

Projects

Examples: Zero-emission trucks, energy infrastructure and renewables, compost facilities, digesters, etc.

Transition Planning Must Be Holistic

Transition Away from Fossil Fuels: Petroleum, Natural Gas

Electrify End Uses

Clean Fuels for Hard to Electrify End Uses

Equitable Transition for All

... within a Complex, Rapidly Changing Environment

- Customers and Supply Chains
- Shareholder and Investor Pressure
- Financing challenges and opportunities
- Technological Innovation
- Fluctuating Energy Prices and Reliability Issues
- Hiring and Workforce Development
- Regulation
- Policy
- Federal, State and Utility incentives

We need to build a lot of new resources, and fast

To provide 100% clean electricity by 2045,

California will build an unprecedented amount of new utility-scale clean energy resources

Report projects the need for 148,000 MW 200,000	
In addition, California also expects new 180,000	
solar and demand response. 160,000	
140,000	
Biomass 120,000	
Battery Storage 100,000	
Geothermal 80,000	
Offshore Wind 60.000	
Long Duration Energy Storage 40.000	35
Utility-Scale Solar 20,000	
Wind 0	

otal Clean Electricity Resources

Source: 2021 SB 100 Joint Agency Report

Achieving 100% Clean Electricity in California

To Achieve Clean Energy

Development Needs To Rapidly Accelerate

 \mathfrak{Q}

·A·

(4)

Solar and wind build rates need to nearly triple*

Battery storage build rates need to increase by nearly eightfold**

California's growing battery storage capacity

captures the state's abundant renewable resources

*Projected as of June 1, 2023 based on California ISO interconnection queue.

This Includes Long-term Resources too

UCDAVIS Energy and Efficiency Institute

CAISO 20-year Transmission Outlook - 2022

We Will Also Need Energy Efficiency and Load Flexibility

California Energy Demand (2000-2020)

The New Normal

40% of the Fortune 500 Active in Climate Based Initiatives

199 Fortune 500 companies have at least one tracked climate initiative. up from 144 companies in 2020. This is 39% of the U.S. Fortune 500 Today, the conversation is shifting from whether major status. ... companies will ever commit to net-zero emissions to how they plan to achieve such ambitions.

Committed To Net Zero Target

implementing science-based targets... in general, most companies did not provide detailed "roadmaps" to net zero goals - which we view as one of the areas most lacking in corporate target setting.

At least one fifth (21%) of the world's 2,000 largest public companies have committed to meet net zero targets, according to a new report called 'Taking Stock: A global assessment of net zero targets.' The companies together represent sales of nearly \$14 trillion.

> Today, the conversation is shifting from whether major status. ... companies will ever commit to net-zero emissions to how they plan to achieve such ambitions.

The Utility Industry is Going Through a Massive Clean **Energy Transition... a Discussion**

- What UC Davis is doing to help
- What I learned from my time at the CA Energy Commission
- Heat pumps are a microcosm for the challenge ahead

Highlights From Market Research on Heat Pumps

Overview of Market for Residential Heat Pumps in California for NEDO and Japanese Heat Pump Manufacturers

David Vernon and Dr. Sarah Outcault

March 26, 2024

California climate

Generally mild weather conditions

Source: Title 24 California | Title 24 - Title 24 California Climate Zones (title24express.com)

Housing stock

New homes

Roughly 370,000 new housing units built each year 2018-2022

> 55% have space conditioning heat pumps

16% have heat pump water heaters

Existing homes

- > 14.6 million homes
 - > 9.5 million (65%) single-family homes
 - 4.7 million (32%) are in multi-family buildings

Heat pumps are uncommon

HVAC systems in existing homes

Heating

67% have gas-fired furnace (9.8 million)

5% have heat pumps (760,000)

Cooling

- \geq 54% have central air conditioning (7.9 million)
- \geq 23% have window air conditioning units (3 million)
- \geq 25% have no air conditioning (~3.6 million)

Water heating in existing homes

Equipment type

- \geq 80% have gas-fired water heaters (11.5 million)
- \geq 90% have water heaters with storage tanks (13.2 million)
- > 1% have heat pump water heaters

Tank size

- \geq Large storage despite small households (55% have 1-2 people)
- > > 80% hold more than 114 liters (30 gallons)
- \geq 45% hold more than 189 liters (50 gallons).
- Tanks holding 114 liters (30 gallons) or less are found in only 8% of homes.

Load management potential

- Heat pumps for space and water heating have been identified as critical tools for achieving California's load management goals
- With advanced controls, heat pumps can enable:
 - Optimization of renewable generation sources (and lower emissions)
 - Grid stability
 - Building electrification
 - Utility bill management

Yet California Faces Barriers to Adoption

>Higher first cost

>Higher operating cost

Installer workforce

Installed costs: Space conditioning

Source: Opinion Dynamics (OD). (2022). California Heat Pump Residential Market Characterization and Baseline Study (CPUC Contract 17PS5017).

Installed costs for heat pumps

Sources: Opinion Dynamics (OD). (2022). California Heat Pump Residential Market Characterization and Baseline Study (CPUC Contract 17PS5017). https://www.calmac.org/publications/OD-CPUC-Heat-Pump-Market-Study-Report-5-17-2022.pdf; TECH Clean California. (2024). TECH Public Reporting Data. https://techcleanca.com/public-data/download-data/

Installed costs: Water heaters

Source: Opinion Dynamics (OD). (2022). California Heat Pump Residential Market Characterization and Baseline Study (CPUC Contract 17PS5017).

Installed costs for heat pump water heaters

Sources: Opinion Dynamics (OD). (2022). California Heat Pump Residential Market Characterization and Baseline Study (CPUC Contract 17PS5017). https://www.calmac.org/publications/OD-CPUC-Heat-Pump-Market-Study-Report-5-17-2022.pdf; TECH Clean California. (2024). TECH Public Reporting Data. https://techcleanca.com/public-data/download-data/

Operating costs

- Average cost of a kilojoule of energy in the form of electricity is 3.9 times the average cost for natural gas (in California in 2022)
- Some utilities offer reduced electricity rates for heat pumps
- Advanced controls can reduce operating costs by leveraging time-ofuse rates and demand response programs
- Smaller utilities (LADWP, SMUD) have cheaper electricity than IOUs

Source: <u>https://calmatte</u> prices/

Source: https://calmatters.org/california-divide/2021/03/california-high-electricity-

Life cycle costs

Minimum efficiency heat pumps are more expensive than furnace/AC and gas-fired water heating in all regions of the state except SMUD territory

High efficiency heat pumps provide modest savings in roughly half of CA climate zones **HVAC**

Source: Frontier Energy, Inc and Misti Bruceri & Associates, LLC. (2021). 2019 Cost-Effectiveness Study: Existing Single Family Residential Building Upgrades. California Energy Codes and Standards Program. https://localenergycodes.com/download/875/file_path/fieldList/2019%20V2-Residential%20Retrofit%20Cost-eff%20Report-2021-08-27.pdf

Water heating

Workforce

> Workforce growth needed to satisfy anticipated increase in heat pump demand

- > Additional workforce training is needed
- Coordination across trades poses challenges given business models

Position	2020 Employment Estimate	Additional job opening in 2030	% new entrants 2020 to 2030
Heating, Air Conditioning, and Refrigeration Mechanics and Installers	34,800	4,960	14%
Electricians	73,200	22,110	30%
Plumbers, Pipefitters, and Steamfitters	47,000	10,690	23%
Total	155,000	37,760	24%

Source: California Open Data. (2022). Long-Term Industry Employment Projections. https://data.ca.gov/dataset/long-term-industry-employment-projections

Customer considerations

Source: https://bsesc.energy.gov/training-modules/heat-pump-water-heatersbusiness-development

- - >
 - be needed

Californians have low awareness and knowledge of heat pumps \rightarrow Customer education is needed

Customers report difficulty navigating the process to select contractors and obtain financial incentives \rightarrow Third party services can help to address these challenges

Heat pumps deliver a different space conditioning experience and have different user interfaces and controls \rightarrow

Customer education may be needed

Improved user interface designs may

Market outlook

- Large potential for heat pump demand in the residential market
- California policy and programs are actively promotings heat pumps
- Installed and operating costs still a barrier
- Supply and demand side need to grow
 - More installers, more training
 - Greater customer awareness

ial market s heat pumps

Discussion

THANK YOU

Contacts:

Benjamin Finkelor Executive Director, Energy and Efficiency Institute bmfinkelor@ucdavis.edu

