Alternative Commercial Laundry Systems

Poised for Big Energy Savings

Mary Horsey
Associate Director
Technology Assessment, E Source

Utility Energy Forum, 2015
A New Dawn for Commercial Laundry Efficiency
New Technologies on the Rise...

Liquid carbon dioxide (CO₂)

And an old technology is being revived

Ozone

Courtesy: Scott A. Miller
Liquid CO$_2$
What’s Liquid CO\(_2\)?

- **Solvent properties of CO\(_2\):**
 - Lower viscosity and surface tension
 - Improved small-pore penetration
 - Cleans better and more quickly

<table>
<thead>
<tr>
<th>Gas at room temperature</th>
<th>Solid at low temperature</th>
<th>Liquid at higher pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonation</td>
<td>Dry ice</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

Courtesy (left to right): Scott A. Miller, Mr. Thomas, and Michael Melgar
How the Process Works

Particulates and organic wastes (wastes used as bio-diesel blends)

Clean and dry

Courtesy: CO2Nexus
Comparing Apples to Apples

<table>
<thead>
<tr>
<th>Baseline Standard Commercial System</th>
<th>CO2 System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washer</td>
<td>Washer, compressor, and pumps</td>
</tr>
<tr>
<td>Equipment</td>
<td>Equipment</td>
</tr>
<tr>
<td>Electricity (ongoing)</td>
<td>Electricity (ongoing)</td>
</tr>
<tr>
<td>Water for wash (ongoing)</td>
<td>CO2 (one-time)</td>
</tr>
<tr>
<td>Water treatment</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Chemicals (ongoing)</td>
<td></td>
</tr>
<tr>
<td>Pump energy (ongoing)</td>
<td></td>
</tr>
<tr>
<td>Water heating (natural gas)</td>
<td></td>
</tr>
<tr>
<td>Detergents (ongoing)</td>
<td></td>
</tr>
<tr>
<td>Water for rinse (ongoing)</td>
<td></td>
</tr>
<tr>
<td>Dryer</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Electricity (ongoing)</td>
<td></td>
</tr>
<tr>
<td>Natural gas (ongoing)</td>
<td></td>
</tr>
</tbody>
</table>
Liquid CO₂ Savings

Annual process consumption

<table>
<thead>
<tr>
<th></th>
<th>Water-based system</th>
<th>CO₂-based system</th>
<th>Percentage reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (gallons)</td>
<td>4 million</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Electric energy (MWh)</td>
<td>444</td>
<td>200</td>
<td>33%</td>
</tr>
<tr>
<td>Natural gas energy (MWh)</td>
<td>667</td>
<td>300</td>
<td>22%</td>
</tr>
<tr>
<td>Chemicals (pounds)</td>
<td>30,000 (disposed of in municipal water system)</td>
<td>9,000</td>
<td>70%</td>
</tr>
<tr>
<td>Garment life</td>
<td>50+ cycles</td>
<td>2 to 3 times longer life</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note: Based on 1.2 million pounds of garments throughput per year.
Economics and Applications

- Simple payback period target of 2 to 4 years
 - Laundry-as-a-service: $/lb basis
 - Application- or market-specific
 - Water/energy costs vary geographically

- Applications
 - Hospitality
 - Upstream textile processing
 - Coated fabrics and garments
 - Oil and gas
 - Healthcare
 - Dry cleaning
Non-Energy Benefits

- CO₂ is recycled
- Clothes come out dry
- No secondary waste stream
- Short cycle times (approximately 20 minutes)
- High throughput
- Increased fabric/garment life
- No shrinkage or color bleeding
- Cleans a wide variety of fabrics
- Non-toxic, non-hazardous, non-flammable, and inexpensive

Source: MS Clipart
Demonstration Project

- Cleanroom garment field test
 - CEC PIER project
 - Aramark Cleaning Services, Los Angeles
 - Testing completed March 2014

Results

Cleanroom Requirements
- Classification based on air particulates
- Static-charge control
- Minimal biological contamination

CO₂ System Advantages
- 60% fewer particles
- Reduced static buildup
- 25% less bioburden
Polymer Beads
How Polymer Beads Clean and Work

- Polymer beads:
 - Spheroidal
 - The size of BBs
 - 1:2 mass ratio of laundry to beads
 - Expand with moisture
 - Polarized with special additive

- The Process:
 - Beads enter drum of specially made machine
 - Polarizing additive added
 - Agitate with fabrics
 - Beads lift and absorb stains
 - Beads exit drum for reuse
 - No treatment of beads necessary
Why Polymer Bead Is Better

- One-quarter of the water
- Heat
- Half the detergent
- Less time
- Reduced drying*

Courtesy: Liberty Utilities

Source: MS Clipart
Liberty Utilities Laundry Study

Procedure

- Two machines
 - Milnor (baseline)
 - Xeros (polymer bead)
- Three types of fabrics
 - Bath towels
 - White linens
 - Colored linens
- Same loads
 - 60 pounds
- Measured
 - Water
 - Therms
 - Run time
 - Electricity
Big Savings

<table>
<thead>
<tr>
<th>Per load</th>
<th>Milnor (baseline)</th>
<th>Xeros (polymer bead)</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (minutes)</td>
<td>54 to 78</td>
<td>50 to 51</td>
<td>4 to 26</td>
</tr>
<tr>
<td>Water (gallons)</td>
<td>134 to 156</td>
<td>35 to 37</td>
<td>80%</td>
</tr>
<tr>
<td>Therms</td>
<td>1.02 to 1.59</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Electricity</td>
<td>2 kWh</td>
<td>3 kWh</td>
<td>−4,600 kWh(^a)</td>
</tr>
</tbody>
</table>

Notes: kWh = kilowatt-hours.
\(^a\) total additional electricity use in a year (compared to baseline).

Source: MS Clipart
Non-Energy Benefits

- Gentler on fabrics
- No sorting colors
- Improved cleaning
- No bleach
Economics

Total system cost: $56,000

Incentives from Liberty Utilities, National Grid, Unitil, Public Service of New Hampshire, NSTAR, and New Hampshire

- **New construction**
 - 75% incremental cost ($25,612)
- **Retrofit**
 - 50% cost ($28,000)

Source: MS Clipart
Economics (cont.)

Approximate simple payback periods

With incentive = 5 years
Without incentive = 10 years

With incentive = 5 years
Without incentive = 10 years

Source: MS Clipart
OZONE
How Does Ozone Clean?

- Chemically reacts with soil molecules
- Breaks soils into smaller molecules
- Water-soluble soils released and removed via agitation
How the Process Works

- New or existing washer
- Ozone produced in generator
- Injected into cold water supply
- Ozone is reduced to oxygen (O₂) during wash process
Field Test Results: % Savings

<table>
<thead>
<tr>
<th></th>
<th>PNNL/Navigant</th>
<th>PNNL/Navigant</th>
<th>PG&E</th>
<th>Santa Barbara County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charleston Place Hotel</td>
<td>65%</td>
<td>63%</td>
<td>66%</td>
<td>88%</td>
</tr>
<tr>
<td>Rogerson House Asstd Living</td>
<td>+ 1.5 kWh/load</td>
<td>+ 38 kWh/month</td>
<td>3.5%</td>
<td>n/a</td>
</tr>
<tr>
<td>Electricity</td>
<td>3.5%</td>
<td>n/a</td>
<td>19%</td>
<td>31%</td>
</tr>
<tr>
<td>Water</td>
<td>15%</td>
<td>+19%</td>
<td>31%</td>
<td>19%</td>
</tr>
</tbody>
</table>
Economics

Ozone System Costs
Simple Payback Period

Charleston House
- $42,200
- 2.8 years

Hilton Garden Inn
- $14,000
- 7.5 months

Source: MS Clipart
Applications

Hospitality
Food Service
Healthcare
Laboratories
Cleanrooms
Non-Energy Benefits and Concerns

- **Benefits**
 - Increased garment life
 - Improved effluent quality
 - Reduced:
 - Water use
 - Chemical use
 - Cycle time
 - Drying time

- **Concerns**
 - Toxic gas code requirements
 - British Columbia requires:
 - Special piping
 - Eye-wash station

Source: MS Clipart
Resources

Liquid CO₂

Demonstration of a Carbon Dioxide–Based Industrial Laundry Machine (PDF), California Energy Commission (2012)

Polymer Bead

Xeros Laundry Technical Assessment Study (PDF), Liberty Utilities (2014)

Ozone

Project Test Report: Santa Barbara County Jail Ozone Laundry Detergent (PDF), Southern California Gas Co. (2011)
Resources

Ozone

For More Information

Mary Horsey
Associate Director
Technology Assessment Service, E Source
303-345-9160 mary_horsey@esource.com

Questions?